

Particle representations for SPDEs with applications

Jie Xiong

Department of Mathematics Southern University of Science and Technology Shenzhen, China, 518055

(Based on joint works with Kurtz)

Research supported partially by SUST start-up fund

The 14th International Workshop on Markov Processes and Related Topics, Chengdu 2018

Outline

- Weighted particle representation
- 2 System by atomic measure
- Poisson particle representation
- 4 Application to stochastic filtering
- **6** Application to FBSDEs
- 6 Application to superprocesses

1. Weighted particle representation

SPDE we shall study

$$\frac{\partial V(t,x)}{\partial t} = L_2(V(t))V(t,x) + \int_U L_1(V(t),u)V(t,x)\frac{W(dudt)}{dt}$$
(1.1)

W(duds) noise in space-time $L_1(V(t), u)$ first order diff. operator $L_2(V(t))$ second order diff. operator

$$\langle \phi, V(t) \rangle = \langle \phi, V(0) \rangle + \int_0^t \langle L_2(V(s))\phi, V(s) \rangle ds \qquad (1.2)$$
$$+ \int_{U \times [0,t]} \langle L_1(V(s), u)\phi, V(s) \rangle W(duds)$$

where

$$L_1(\nu, u)\phi(x) = \beta(x, \nu, u)\phi(x) + \alpha^T(x, \nu, u)\nabla\phi(x),$$

$$L_2(\nu)\phi(x) = \frac{1}{2} \sum_{i,j=1}^d a_{ij}(x,\nu)\partial_{x_i}\partial_{x_j}\phi(x) + b(x,\nu)^* \nabla \phi(x) + d(x,\nu)\phi(x).$$

Choose σ and γ s.t.

$$a(x,\nu) = \sigma(x,\nu)\sigma^{T}(x,\nu) + \int_{U} \alpha(x,\nu,u)\alpha^{T}(x,\nu,u)\mu(du)$$

and

$$b(x,\nu) = c(x,\nu) + \sigma(x,\nu)\gamma(x,\nu) + \int_{U} \beta(x,\nu,u)\alpha(x,\nu,u)\mu(du)$$

Consider system with locations

$$X_{i}(t) = X_{i}(0) + \int_{0}^{t} \sigma(X_{i}(s), V(s)) dB_{i}(s)$$

$$+ \int_{0}^{t} c(X_{i}(s), V(s)) ds \qquad (1.3)$$

$$+ \int_{U \times [0,t]} \alpha(X_{i}(s), V(s), u) W(duds)$$

with

$$V(t) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} A_i(t) \delta_{X_i(t)}$$
 (1.4)

and weights

$$A_{i}(t)$$

$$= A_{i}(0) + \int_{0}^{t} A_{i}(s)\gamma^{T}(X_{i}(s), V(s))dB_{i}(s)$$

$$+ \int_{0}^{t} A_{i}(s)d(X_{i}(s), V(s))ds$$

$$+ \int_{U\times[0,t]} A_{i}(s)\beta(X_{i}(s), V(s), u)W(duds).$$
(1.5)

Theorem

V(t) is sol. to (1.4) iff it is a sol. to SPDE (1.2).

Most with constant weight 1:

McKean ('67)

{ Hitsuda & Mitoma ('86) conti. Graham ('96) jump

 $\infty\text{-dim.}\left\{\begin{array}{l}\text{Chiang, Kallianpur \& Sundar ('91), Cont.}\\\text{Kallianpur \& Xiong ('94) jump}\\\text{Xiong ('95)}\end{array}\right.$

non-constant { Non-random: Dawson & Vaillancourt ('95) weights } Random: Kotelenez ('95) $A_i(t) \equiv A_i(0)$

Conditions

$$|\sigma(x,\nu)|^2 < K^2$$

$$|\sigma(x_1, \nu_1) - \sigma(x_2, \nu_2)|^2 \le K^2(|x_1 - x_2|^2 + \rho(\nu_1, \nu_2)^2)$$

where

$$\rho(\nu_1, \nu_2) = \sup\{|\langle \phi, \nu_1 - \nu_2 \rangle| : ||\phi||_{\infty} \le 1, Lip(1)\}.$$

Similar conditions for other coeff.

The system (1.3-1.5) has a solution.

*Idea of proof*Sequence of approximation

$$B_i^n(t) = B_i\left(\frac{[nt]}{n}\right), \qquad D_n(t) = \frac{[nt]}{n}$$

$$W^{n}(A \times [0, t]) = W\left(A \times [0, \frac{[nt]}{n}]\right)$$

Solution (X^n, A^n, V^n) weak convergence to (X, A, V)

The system (1.3-1.5) has at most one solution.

Idea of proof

Uniqueness of system:

Lipschitz condition is not satisfied: e.g. $(a, x) \mapsto a\beta(x)$

Local Lipschitz, i.e. on

$$\{(a_i): |a_i| \le M, \ i = 1, 2, \cdots\}$$

How to truncate?

The system (1.3-1.5) has at most one solution.

Idea of proof

Uniqueness of system:

Lipschitz condition is not satisfied: e.g. $(a, x) \mapsto a\beta(x)$

Local Lipschitz, i.e. on

$$\{(a_i): |a_i| \le M, \ i = 1, 2, \cdots\}$$

How to truncate?

Truncate the average:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} A_i(t)^2$$

How to prove uniqueness for SPDE (1.2)? Consider Linear SPDE

$$\langle \phi, U(t) \rangle = \langle \phi, U(0) \rangle + \int_0^t \langle L_{2,s} \phi, U(s) \rangle ds$$
$$+ \int_{U \times [0,t]} \langle L_{1,s,u} \phi, U(s) \rangle W(duds) \quad (1.6)$$

where

$$L_{2,s}\phi = L_2(V(s))\phi$$
$$L_{1,s,u}\phi = L_1(V(s),u)\phi$$

If $V_0 \in L^2(\mathbb{R}^d)$, then the linear SPDE (1.6) has at most one solution.

Key: Smooth out by $Z_{\delta}(t) = T_{\delta}U(t)$.

If $V_0 \in L^2(\mathbb{R}^d)$, then SPDE (1.2) has at most one solution.

Proof

Let $V_1(t)$ be another solution.

Consider

$$X_i(t) = X_i(0) + \int_0^t \sigma(X_i(s), V_1(s)) dB_i(s) + \cdots$$
$$A_i(t) = \cdots$$

Let

$$V_2(t) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{\infty} A_i(t) \delta_{X_i(t)}$$

Then V_2 is a solution to

$$\langle \phi, U(t) \rangle = \langle \phi, U(0) \rangle + \int_0^t \langle L_2(V_1(s))\phi, U(s) \rangle ds \qquad (1.7)$$
$$+ \int_{U \times [0,t]} \langle L_1(V_1(s), u)\phi, U(s) \rangle W(duds).$$

 V_1 is also a solution to (1.7). By uniqueness, $V_1 = V_2$. V_1 is a solution to (1.3-1.5). $V_1 = V$

2. System by atomic measure

For $i = 1, 2, \dots$, the position of the *i*th particle is

$$X_t^i = X_0^i + \int_0^t \sigma(X_s^i) dW_s^i + \int_0^t b(X_s^i, N_s) ds + \int_0^t \alpha(X_s^i) dW_s,$$
(2.1)

where

$$N_s = \sum_i \delta_{X_s^i}.$$

Condition (B): $\exists c, r > 0 \text{ s.t.}, \forall x, z^i \in \mathbb{R}, i = 1, 2, \dots, \text{ we have}$

$$|\sigma(x)| + |\alpha(x)| + |b(x, \sum \delta_{z^i})| \le K.$$

Condition (Lip): σ , α Lip., and $\exists c, r > 0$ s.t., $\forall x, \ \tilde{x}, \ z^i, \ \tilde{z}^i \in \mathbb{R}, \ i = 1, 2, \cdots$, we have

$$\left| b\left(x,N\right) - b\left(\tilde{x},\tilde{N}\right) \right|$$

$$\leq c|x - \tilde{x}| \left(N(S_r(x)) + \tilde{N}(S_r(\tilde{x})) \right)$$

$$+ c \left(\sum_{|z^i - x| < r} |z^i - \tilde{z}^i| + \sum_{|\tilde{z}^i - \tilde{x}| < r} |z^i - \tilde{z}^i| \right)$$

$$(2.2)$$

where

$$N = \sum \delta_{z^i}.$$

Typical example

$$b(x, \nu) = \phi\left(x, \int h(x-y)\nu(dy)\right)$$

where ϕ bounded Lipschitz in both variables, h bounded Lipschitz w/ compact support.

Condition (I): $X_0^i = i, i \in \mathbb{Z}$.

Lemma

For any $c_1 > 2$ and t > 0, there exists a positive constant c_2 such that

$$\mathbb{P}(N_t([-n,n]) > c_1 n) \le c_2 e^{-(c_1 - 2)n}, \quad \forall n \in \mathbb{N}.$$
 (2.3)

Corollary

There exists a constant c_3 such that for all n,

$$\mathbb{E}\left(N_t([-n,n])^2 1_{N_t([-n,n]) > 3n}\right) \le c_2 n e^{-n}.$$

Let c be s.t.

$$\rho(a) = c1_{|a| < 1} \exp(-1/(1 - a^2)), \quad a \in \mathbb{R}$$

becomes a p.d.f. Let

$$\phi(x) = \int_{\mathbb{D}} e^{-|a|} \rho(x-a) da, \qquad x \in \mathbb{R}.$$

Then, ϕ is smooth and

$$c_n e^{-|x|} \le \phi^{(n)}(x) \le C_n e^{-|x|}, \quad \forall \ x \in \mathbb{R}.$$

Also

$$\phi(x^i) \le \phi(\tilde{x}^j) \exp\left(|x^i - \tilde{x}^i| + |\tilde{x}^j - \tilde{x}^i|\right). \tag{2.4}$$

Proposition

The system (2.1) has at most one solution.

Idea of proof Let $\{\tilde{X}_t^i, i \in \mathbb{Z}\}$ be another solution.

$$f(t) \equiv \mathbb{E} \sum_{i} |X_t^i - \tilde{X}_t^i|^2 \phi(X_t^i) \le I_0 + I_1 + I_2$$
 (2.5)

where

$$I_0 = c \int_0^t \mathbb{E} \sum_i |X_s^i - \tilde{X}_s^i|^2 \phi(X_s^i) ds,$$

$$I_1 = c \int_0^t \mathbb{E} \sum_i \sum_j |X_s^j - \tilde{X}_s^j|^2 \phi(X_s^j) 1_{|X_s^j - X_s^i| \le 1} ds,$$

$$I_2 = c \int_0^t \mathbb{E} \sum_{s} \sum_{s} |X_s^j - \tilde{X}_s^j|^2 \phi(\tilde{X}_s^j) 1_{|\tilde{X}_s^j - \tilde{X}_s^i| \le 1} ds.$$

$$\begin{aligned}
&I_{1} \\
&\leq c \int_{0}^{t} \mathbb{E} \sum_{j} |X_{s}^{j} - \tilde{X}_{s}^{j}|^{2} \phi(X_{s}^{j}) \#\{i : |X_{s}^{j} - X_{s}^{i}| \leq 1\} ds \\
&\leq c \int_{0}^{t} \mathbb{E} \left\{ \left(\sum_{j: |X_{s}^{j}| < n} |X_{s}^{j} - \tilde{X}_{s}^{j}|^{2} \phi(X_{s}^{j}) \right) N_{s}([-n, n]) \right\} ds \\
&+ c \int_{0}^{t} \mathbb{E} \left\{ \sum_{j: |X_{s}^{j}| \geq n} |X_{s}^{j} - \tilde{X}_{s}^{j}|^{2} \phi(X_{s}^{j}) \#\{i : |X_{s}^{j} - X_{s}^{i}| \leq 1\} \right\} ds \\
&\equiv I_{11} + I_{12}.
\end{aligned}$$

$$I_{12} \le ce^{-n/2}$$
,

$$I_{11} \leq 3cn \int_{0}^{t} \mathbb{E} \sum_{j: |X_{s}^{j}| < n} |X_{s}^{j} - \tilde{X}_{s}^{j}|^{2} \phi(X_{s}^{j}) ds$$

$$+ c \int_{0}^{t} \mathbb{E} \left\{ \left(\sum_{j: |X_{s}^{j}| < n} |X_{s}^{j} - \tilde{X}_{s}^{j}|^{2} \phi(X_{s}^{j}) \right) \right.$$

$$\times N_{s}([-n, n]) 1_{N_{s}([-n, n]) > 3n} \right\} ds$$

$$\leq cn \int_{0}^{t} f(s) ds + ce^{-\delta n}.$$

Then,

$$I_1 \le cn \int_0^t f(s)ds + 2ce^{-\delta n}.$$

Similarly

$$I_2 \le cn \int_0^t \tilde{f}(s)ds + ce^{-\delta n}. \tag{2.6}$$

Hence,

$$f(t) \le cn \int_0^t \left(f(s) + \tilde{f}(s) \right) ds + ce^{-\delta n}.$$

Similarly, we can prove that

$$\tilde{f}(t) \le cn \int_0^t \left(f(s) + \tilde{f}(s) \right) ds + ce^{-\delta n}.$$

Adding two equations, we get

$$f(t) + \tilde{f}(t) \le cn \int_0^t \left(f(s) + \tilde{f}(s) \right) ds + ce^{-\delta n}.$$

By Gronwall's inequality, for $t < \delta$, we have

$$f(t) + \tilde{f}(t) \le ce^{-\delta n}e^{nt} \to 0$$

This gives us uniqueness for $t < \delta$.

How to get uniqueness for any t?

Adding two equations, we get

$$f(t) + \tilde{f}(t) \le cn \int_0^t \left(f(s) + \tilde{f}(s) \right) ds + ce^{-\delta n}.$$

By Gronwall's inequality, for $t < \delta$, we have

$$f(t) + \tilde{f}(t) \le ce^{-\delta n}e^{nt} \to 0$$

This gives us uniqueness for $t < \delta$. How to get uniqueness for any t? We get uniqueness by replacing $e^{-|x|}$ by $e^{-\lambda|x|}$.

3. Poisson particle representation

Consider system: For $i = 1, 2, \dots$,

$$X_t^i = X_0^i + \int_0^t \sigma(X^i) dW_i(s) + \int_0^t b(X_s^i, V_s) ds$$
$$+ \int_{U \times [0, t]} \alpha(X_s^i, u) W(duds)$$
(3.1)

and

$$U_{t}^{i} = U_{0}^{i} + \int_{0}^{t} U_{s}^{i} \gamma(X_{s}^{i}) dW_{i}(s) + \int_{0}^{t} U_{s}^{i} a(X_{s}^{i}, V_{s}) ds + \int_{U \times [0, t]} U_{s}^{i} \beta(X_{s}^{i}, u) W(duds),$$
(3.2)

where V is the measure-valued process given by

$$V(t) = \lim_{u \to \infty} \frac{1}{u} \sum_{U_t^i \le u} \delta_{X_t^i}.$$
 (3.3)

Remark

i) Given V,

$$\sum_{i} \delta_{(X_t^i, U_t^i)}$$

is a Poisson random measure on $\mathbb{R} \times \mathbb{R}_+$ with intensity measure $V(t) \times m$, where m is the Lebesgue measure on \mathbb{R}_+ .

ii) Advantages of Poisson representation: V(t) can be infinite measure.

iii)

$$V(t) = \lim_{\epsilon \to 0+} \epsilon \sum_{i=1}^{\infty} e^{-\epsilon U_t^i} \delta_{X_t^i}$$
$$= \lim_{\epsilon \to 0+} \epsilon^2 \sum_{i=1}^{\infty} U_t^i e^{-\epsilon U_t^i} \delta_{X_t^i}.$$

Condition (B) remains true. Wasserstein distance by

$$\rho_x(\nu_1, \nu_2) = \sup \left\{ \left| \int_{|y-x| \le 1} f(y)(\nu_1 - \nu_2)(dy) \right| : f \in \mathbb{B}_1 \right\},$$

where \mathbb{B}_1 is the unit ball under Lipschitz norm, i.e.,

$$\mathbb{B}_1 = \{ f : \mathbb{R} \to \mathbb{R}, |f(x)| \le 1, |f(x) - f(y)| \le |x - y| \}.$$

Condition (Lip): $\exists K \text{ s.t. } \forall x, \ \tilde{x} \in \mathbb{R} \text{ and } \nu, \ \tilde{\nu} \in M(\mathbb{R}), \text{ we have}$

$$|b(x,\nu) - b(\tilde{x},\tilde{\nu})| \le K(|x - \tilde{x}| (1 + \nu(S_1(x)) + \tilde{\nu}(S_1(\tilde{x}))) + \rho_x(\nu,\tilde{\nu}) + \rho_{\tilde{x}}(\nu,\tilde{\nu})),$$

where $S_1(x)$ denotes the interval (x-1,x+1).

Suppose that (3.1-3.3) has two solutions (X_i, U_i, V) and $(\tilde{X}_i, \tilde{U}_i, \tilde{V})$, $i = 1, 2, \cdots$.

We will need the following large ball type estimate.

Lemma

Suppose that

$$\sup_{y \in \mathbb{R}} \left(V_0(S_2(y)) + \int_{|x-y| > 2} \frac{V_0(dx)}{|x-y-1|} \right) < \infty,$$

where $S_2(y)$ is the interval with center y and radius 2. Then, there are constants c, $\delta > 0$ such that for any $s \in [0, T]$ and $n \in \mathbb{N}$, we have

$$\mathbb{P}\left(\sup_{|y| \le n} V_s(S_1(y)) > \sqrt{n}\right) \le ce^{-\delta n}.$$
 (3.4)

Key in the proof i) V solution to (1.2).

ii) By the exponential formula of Boué-Dupuis, we have

$$-\log \mathbb{E}e^{f(W)} = \inf_{u} \mathbb{E}\left(\frac{1}{2}||u||^{2} - f\left(W + \int_{0}^{\cdot} u_{s}ds\right)\right), \quad (3.5)$$

where the infimum is taken over all processes u that are \mathcal{F}_t^W -predictable such that

$$||u||^2 = \int_0^T u_t^2 dt < \infty, \quad a.s.$$

The infinite system (3.1-3.3) has a unique solution.

Idea of proof Let

$$f(t) \equiv \lim_{\epsilon \to 0} \sum_{i} \epsilon e^{-\epsilon U_t^i} |X_t^i - \tilde{X}_t^i|^2 \phi(X_t^i),$$

and

$$g(t) = \lim_{\epsilon \to 0} \mathbb{E} \sum_{i} \epsilon^{3} e^{-\epsilon U_{t}^{i}} (U_{t}^{i} - \tilde{U}_{t}^{i})^{2} \phi(X_{t}^{i}).$$

 \tilde{f} and \tilde{g} are defined similarly.

Let h(t) be the sum of f(t), g(t), $\tilde{f}(t)$ and $\tilde{g}(t)$. Then,

$$h(t) \le cn \int_0^t h(s)ds + ce^{-\delta n}.$$

The uniqueness then follows from Gronwall's inequality.

4. Application to stochastic filtering

Signal process

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t.$$

Observation process

$$Y_t = \int_0^t h(X_s)ds + W_t.$$

Information

$$\mathcal{G}_t = \sigma\{Y_s: \ s \le t\}.$$

Optimal filter

$$\langle f, \pi_t \rangle = \mathbb{E} \left(f(X_t) | \mathcal{G}_t \right).$$

Kallianpur-Striebel formula,

$$\langle f, \pi_t \rangle = \frac{\langle f, \mu_t \rangle}{\langle 1, \mu_t \rangle},$$

where

$$\langle f, \mu_t \rangle = \hat{\mathbb{E}} \left(f(X_t) M_t | \mathcal{G}_t \right)$$

and $\hat{\mathbb{E}}$ is expectation wrt \hat{P} under which (B, Y) is B.M.

Zakai equation: Special case of (1.1) with W = Y and

$$L_2\phi(x) = \frac{1}{2} \sum_{i,j=1}^d a_{ij}(x) \partial_{x_i} \partial_{x_j} \phi(x) + b(x)^* \nabla \phi(x),$$

$$L_1\phi(x) = h(x)\phi(x).$$

Kushner-FKK equation: Special case of (1.1) with W being the innovation process and

$$L_1(\nu, u)\phi(x) = h(x) - \langle h, \nu \rangle$$
.

5. Application to FBSDEs

Consider

$$\left\{ \begin{array}{lcl} dX(t) & = & b(X(t),Y(t),Z(t))dt + \sigma(X(t),Y(t),Z(t))dW(t), \\ dY(t) & = & g(X(t),Y(t),Z(t))dt + Z(t)dW(t), \\ X(0) & = & x, \ Y(T) = h(X(T)). \end{array} \right.$$

How to solve FBSDE numerically?

Try Y(t) = u(t, X(t)). By Itô's formula, we get

$$dY(t) = \partial_t u dt + \partial_x u dX(t) + \frac{1}{2} \partial_x^2 u (dX(t))^2$$

$$= \partial_t u dt + \partial_x u b dt + \partial_x u \sigma dW_t + \frac{1}{2} \partial_x^2 u \sigma^2 dt$$

$$= \left(\partial_t u + b \partial_x u + \frac{1}{2} \sigma^2 \partial_x^2 u\right) dt + \partial_x u \sigma dW_t.$$

Compare with FBSDE, we get

$$h(t, X(t), u(t, X(t)), Z(t)) = \partial_t u(t, X(t)) + b(t, X(t), u(t, X(t)), Z(t)) \partial_x u(t, X(t)) + \frac{1}{2} \sigma^2(t, X(t), u(t, X(t)), Z(t)) \partial_x^2 u(t, X(t))$$
(5.6)

and

$$Z(t) = \sigma(t, X(t), u(t, X(t)), Z(t)) \partial_x u(t, X(t)).$$

Four step scheme (Ma-Protter-Yong):

Step 1: Find function z(t, x, y, p) satisfying

$$z(t, x, y, p) = \sigma(t, x, y, z(t, x, y, p))p. \tag{5.7}$$

Step 2: Solve PDE

$$\begin{cases}
\partial_t u + b(t, x, u, z(t, x, u, \partial_x u)) \partial_x u \\
+ \frac{1}{2} \sigma^2(t, x, u, z(t, x, u, \partial_x u)) \partial_x^2 u \\
= h(t, x, u, z(t, x, u, \partial_x u)) \\
u(T, x) = g(x), \quad x \in \mathbb{R}.
\end{cases} (5.8)$$

Step 3: Solve SDE

$$dX(t) = \tilde{b}(t, X(t))dt + \tilde{\sigma}(t, X(t))dW_t, \quad X_0 = x, \tag{5.9}$$

where

$$\tilde{b}(t,x) = b(t,x,u(t,x),z(t,x,u,\partial_x u(t,x))).$$

Step 4:

$$\begin{cases}
Y(t) = u(t, X(t)) \\
Z(t) = z(t, X(t), Y(t), \partial_x u(t, X(t))).
\end{cases} (5.10)$$

(A1) The generator g has the following form: for $z = (z_1, \dots, z_l)$,

$$g(x, y, z) = C(x, y)y + \sum_{j=1}^{l} D_j(x, y)z_j,$$

and b(x,y), $\sigma(x)$, g(x,y,z), f(x), C(x,y) and D(x,y) are all bounded and Lipschitz continuous maps with bounded partial derivatives up to order 2. Furthermore, the matrix $\sigma\sigma^*$ is uniformly positive definite, and the function f is integrable. Here σ^* denote the transpose of the matrix σ .

We consider the following FBSDE in the fixed duration [0, T]:

$$\begin{cases} dX(t) = b(X(t), Y(t)) dt + \sigma(X(t)) dW(t), \\ -dY(t) = g(X(t), Y(t), Z(t)) dt - Z(t) dW(t), \\ X(0) = x, Y(T) = f(X(T)), \end{cases}$$
(5.11)

where $b: \mathbb{R}^d \times \mathbb{R}^k \to \mathbb{R}^d$, $\sigma: \mathbb{R}^d \to \mathbb{R}^{d \times l}$, $g: \mathbb{R}^d \times \mathbb{R}^k \times \mathbb{R}^{k \times l} \to \mathbb{R}^k$ and $f: \mathbb{R}^d \to \mathbb{R}^k$.

The PDE becomes

$$\begin{cases} -\frac{\partial u(t,x)}{\partial t} &= Lu(t,x) + C\left(x,u\left(t,x\right)\right)u\left(t,x\right) \\ &+ \sum_{j=1}^{l} \sigma_{j}\left(x\right)D_{j}(x,u\left(t,x\right))\partial_{x}u\left(t,x\right) \\ u(T,x) &= f(x), \end{cases}$$

and

$$L = \frac{1}{2} \sum_{i,j=1}^{d} a_{ij} \partial_{x_i,x_j} + \sum_{i=1}^{d} b_i \partial_{x_i},$$

with $a_{ij} = (\sigma \sigma^T)_{ij}$, $\sigma = (\sigma_1, \dots, \sigma_l)$ and b_i being the *i*th coordinate of b.

For $0 \le t \le T$, assume v(t, x) = u(T - t, x). Then

$$\begin{cases}
\frac{\partial v(t,x)}{\partial t} = Lv(t,x) + C(x,v(t,x))v(t,x) \\
+ \sum_{j=1}^{l} \sigma_{j}(x) D_{j}(x,v(t,x)) \partial_{x}v(t,x) \\
v(0,x) = f(x).
\end{cases} (5.12)$$

PDE (5.12) can be rewritten as

$$\frac{\partial v(t,x)}{\partial t} = \frac{1}{2} \sum_{i,j=1}^{d} \partial_{x_i,x_j} \left(a_{ij}(x)v(t,x) \right)$$
$$-\sum_{i=1}^{d} \partial_{x_i} \left(\tilde{b}_i(x,v)v(t,x) \right)$$
$$+\tilde{c}\left(x,v\left(t,x \right) \right)v\left(t,x \right)$$

where

$$\tilde{c}(x,v) = C(x,v) - \sum_{i=1}^{d} \partial_{x_i} b_i(x,v)$$
$$- \sum_{i=1}^{d} \partial_{x_i} \tilde{D}_i(x,v) + \frac{1}{2} \sum_{i,j=1}^{d} \partial_{x_i,x_j} a_{ij}(x),$$

and

$$\tilde{D}_{i}(x,v) = \sum_{i}^{l} D_{j}(x,v) \sigma_{ij}(x).$$

 $\tilde{b}_i(x,v) = \sum_{i=1}^{a} \partial_{x_j} a_{ij}(x) - b_i(x,v) - \tilde{D}_i(x,v),$

Theorem (Extension of Kurtz-X. (1999))

For $0 < t \le T$, $i = 1, 2, \dots$, let

$$\begin{cases}
 dX_{i}(t) = \tilde{b}(X_{i}(t), v(t, X_{i}(t)))dt + \sigma(X_{i}(t))dB_{i}(t), \\
 dA_{i}(t) = A_{i}(t)\tilde{c}(X_{i}(t), v(t, X_{i}(t)))dt \\
 V(t) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} A_{j}(t)\delta_{X_{j}(t)}
\end{cases}$$
(5.13)

with i.i.d initial random sequence $\{(X_i(0), A_i(0)), i \in \mathbb{N}\}$ taking values in $\mathbb{R}^d \times \mathbb{R}$, where $\{B_i(t), i \in \mathbb{N}\}$ are independent standard Brownian motions, V(t) has density v(t, x) and v(0, x) = f(x). Then, v(t, x) solves SPDE (5.12).

At time t = 0, k_n particles at locations

$$x_i^n \in \mathbb{R}, \qquad i = 1, 2, \cdots, k_n.$$

 \bullet Each has expo.(n) clock (indep. from each other).

At time t = 0, k_n particles at locations

$$x_i^n \in \mathbb{R}, \qquad i = 1, 2, \cdots, k_n.$$

- Each has expo.(n) clock (indep. from each other).
- When time-up, the particle will split/die w/ equal prob.

At time t = 0, k_n particles at locations

$$x_i^n \in \mathbb{R}, \qquad i = 1, 2, \cdots, k_n.$$

- Each has expo.(n) clock (indep. from each other).
- When time-up, the particle will split/die w/ equal prob.
- Denote particle by a multi-index α .

At time t = 0, k_n particles at locations

$$x_i^n \in \mathbb{R}, \qquad i = 1, 2, \cdots, k_n.$$

- Each has expo.(n) clock (indep. from each other).
- When time-up, the particle will split/die w/ equal prob.
- Denote particle by a multi-index α .
- \bullet Between branching times, particle α moves according to

$$dx_t^{\alpha} = b(x_t^{\alpha})dt + c(x_t^{\alpha})dW_t + e(x_t^{\alpha})dB_t^{\alpha}$$

W, B^{α} indep. B.M.

Define measure-valued process

$$\mu_t^n = \frac{1}{n} \sum_{\alpha \sim t} \delta_{x_\alpha^n(t)}$$

where $\alpha \sim t$ means particle α is alive at time t.

Convergence Theorem

 $(\mu_t^n) \Rightarrow (\mu_t)$ unique sol. to MP: μ_t is $\mathcal{M}(R)$ -valued

$$M_t(f) \equiv \langle \mu_t, f \rangle - \langle \mu, f \rangle - \int_0^t \langle \mu_s, bf' + af'' \rangle ds$$

continuous martingale with

$$\langle M(f) \rangle_t = \int_0^t \left(\langle \mu_s, f^2 \rangle + \langle \mu_s, cf' \rangle^2 \right) ds$$

where $a(x) = \frac{1}{2}(e(x)^2 + c(x)^2)$.

Studied by Adler and Skoulakis (2001) and Wang (1998) among others.

(CMP)

$$N_t(f) \equiv \langle \mu_t, f \rangle - \langle \mu, f \rangle - \int_0^t \langle \mu_s, bf' + df'' \rangle ds$$
$$- \int_0^t \langle \mu_s, cf' \rangle dW_s$$

 P^W -martingale w/

$$\langle N(f)\rangle_t = \int_0^t \langle \mu_s, f^2 \rangle \, ds$$

Formally,

$$N_{t}(f) = \langle \mu_{t}, f \rangle - \langle \mu, f \rangle - \int_{0}^{t} \langle \mu_{s}, (b + c\dot{W}_{s})f' + df'' \rangle ds,$$

Therefore,

$$E^{W} \exp(-\langle \mu_t, f \rangle) = \exp(-\langle \mu, y_{0,t} \rangle),$$

where

$$y_{s,t} = f + \int_{s}^{t} c\partial_{x} y_{r,t} \dot{W}_{r} dr$$
$$+ \int_{s}^{t} \left(b\partial_{x} y_{r,t} + a\partial_{x}^{2} y_{r,t} - y_{r,t}(x)^{2} \right) dr.$$

Stochastic integral is backward Itô integral.

Theorem (Xiong, 2004, AP)

$$\mathbb{E}^{W} \exp\left(-\langle \mu_{t}, f \rangle\right) = \exp\left(-\langle \mu, y_{0,t} \rangle\right),$$

where Lf = af'' + bf',

$$y_{s,t} = f + \int_{s}^{t} c\partial_{x} y_{r,t} dW_{r}$$
$$+ \int_{s}^{t} \left(Ly_{r,t} - y_{r,t}(x)^{2} \right) dr.$$

Forward version:

$$v_t(x) = f(x) + \int_0^t \left(Lv_r(x) - \frac{\gamma}{2}v_r(x)^2 \right) dr$$
$$+ \int_0^t \int_U h(y, x) \nabla v_r(x) W(dr dy). \tag{6.14}$$

Theorem

i) The SLLE (6.14) has a unique solution $v_t(x)$.

ii) v_t is the unique solution of the following infinite particle system: $i = 1, 2, \cdots$,

$$d\xi_t^i = dB_i(t) - \int_U h(y, \xi_t^i) W(dtdy) + \left(2a'(\xi_t^i) - \int_U h(y, \xi_t^i) \nabla h(y, \xi_t^i) \mu(dy)\right) dt, (6.15)$$

$$dm_t^i = m_t^i \left(\left(a''(\xi_t^i) - v_t(\xi_t^i) \right) dt - \int_U \nabla h(y, \xi_t^i) W(dtdy) \right), \tag{6.16}$$

$$\nu_t = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n m_t^i \delta_{\xi_t^i}, \qquad a.s.$$
 (6.17)

where for any $t \geq 0$, ν_t is absolutely continuous with respect to Lebesgue measure with ν_t as the Radon-Nikodym derivative.

Thanks!