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1. Weighted particle representation

SPDE we shall study

AV (t,x)
at

= Ly(V(t)V(t,x) (1.1)

W (dudt)
ﬁémwwwwﬁmm,

W (duds) noise in space-time
Li(V(t),u) first order diff. operator
Ly(V (t)) second order diff. operator



(= B>t
GVE) = (6V(O0)+ /0 (Lo(V()d V(s)yds  (1.2)
+ / (L(V(3), )6, V(s)) W (duds)
U x[0,t]

where

Li(v,u)p(x) = Bz, v,u)p(x) + ozT(as, v,u)Vo(x),

Ly(v)p(z) = ij (%, v)0z,0z,;9(x)
-1

DN | =

Z7]

+b(z,v)* V() + d(z, v)d(x).
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Choose o and 7 s.t.
a(z,v) = o(z,v)ol (z,v)
+ [ aw v (@, un(dn
U
and

b(z,v) = c(z,v)+o(x,v)y(x,v)
—l—/{jﬁ(:v,y,u)oz(:c,u,u)u(du)
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+/ a(X;(s),V(s),u)W (duds)
U x[0,t]

with
SR
V()= lim — " A;(t)x,@ (1.4)
=1

n—00 N 4
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and weights

Ai(t)
= A;(0) + Ai(S)VT(Xi(S)aV(S))dBi(S)

/ Ayl s),V(s))ds

/ A,(8)B(Xa(s), V(s), u)W (duds).
U x[0,t]

Theorem
V (t) is sol. to (1.4) iff it is a sol. to SPDE (1.2).



oooooooooooooooooooooooooooooooo

Most with constant weight 1:

McKean (’67)

Hitsuda & Mitoma (’86) conti.
Graham (’96) jump

Chiang, Kallianpur & Sundar ('91), Cont.
oo-dim. ¢ Kallianpur & Xiong (’94) jump
Xiong ('95)

non-constant | Non-random: Dawson & Vaillancourt (’95)
weights Random: Kotelenez (’95) A;(t) = A;(0)
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Conditions
o(z,v)]* < K*

jo(@1,11) = o(z2,02) ] < K*(|21 — 22f” + p(v1,12)%)
where

pvi,v2) = sup{| (¢, 11 — 12) | : [|Plloo < 1, Lip(1)}.

Similar conditions for other coeff.
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Theorem
The system (1.3-1.5) has a solution.

Idea of proof
Sequence of approximation

B(t) = B, (W> R i

n n

WA x[0,t])) =W (A x [0, [nt]]>

n

Solution (X™, A™ V™) weak convergence to (X, A, V)
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Theorem
The system (1.3-1.5) has at most one solution.

Idea of proof

Uniqueness of system:

Lipschitz condition is not satisfied: e.g. (a,z) — af(x)
Local Lipschitz, i.e. on

{(ai) s |as] <M, i=1,2,---}

How to truncate?



Theorem
The system (1.3-1.5) has at most one solution.

Idea of proof

Uniqueness of system:

Lipschitz condition is not satisfied: e.g. (a,z) — af(x)
Local Lipschitz, i.e. on

{(ai) s |as] <M, i=1,2,---}

How to truncate?
Truncate the average:

lim 3 Ay(r)?
=1

n—00 N 4
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How to prove uniqueness for SPDE (1.2)?
Consider Linear SPDE

G.UMD) = (6U0)+ /0 (L6, U(s)) ds
v / (Ltsnh, U(s)) W (duds)
U x[0,t]

where

L2,s¢ = LQ(V(S))(b
Ll,s,u¢ = LI(V(S)> u)¢

(1.6)



Theorem
If Vo € L2(RY), then the linear SPDE (1.6) has at most one
solution.

Key: Smooth out by Zs(t) = T5U(t).
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Theorem
If Vo € L2(RY), then SPDE (1.2) has at most one solution.
Proof

Let Vi(t) be another solution.
Consider
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Let

Then V5 is a solution to
(9, U(t)) = <¢>7U(0)>+/0 (L2(Vi(s))9, U(s))ds  (1.7)
—I—/ (L1(V1(s),u)p, U(s)) W(duds).
U x[0,t]

V1 is also a solution to (1.7). By uniqueness, V; = V5. V) is a
solution to (1.3-1.5). V1 =V



2. System by atomic measure

For i =1,2,---, the position of the ith particle is

t t t
X;':Xg+/ a(X;')deJr/ b(X;',Ns)der/ a(XHdws,
0 0 0
(2.1)

where
i

Condition (B): 3¢, r >0s.t.,Vx, 2 €R,i=1,2,---, we have

lo/(2)] + |a(z)] + ‘b (:vz&)‘ < K.



Condition (Lip): o, « Lip., and 3 ¢, r > 0 s.t.,
Ve, Z, 2, 2" €R,i=1,2,---, we have
’b(az,N) —b(@,N)‘

<z — 7 (N(Sr($)) + N(Sr(i“))>

tel Do lF-F+ )] - (2.2)

|zt —z|<r |zt —z|<r

N=> 6.

where
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Typical example

ba) =6 (o [ e = i)

where ¢ bounded Lipschitz in both variables, h bounded
Lipschitz w/ compact support.



Condition (I): X§ =1, i € Z.
Lemma

For any ¢; > 2 and ¢ > 0, there exists a positive constant co
such that

P (Ni([-n,n]) > c1n) < cge™ (@172, Vn € N. (2.3)
Corollary
There exists a constant cs such that for all n,

E (Ni([=n, 1)) Ly, ([mnn))>3n) < cone ™.
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Let c be s.t.
pla) = cljg<rexp (—1/(1 — a?)), aeR
becomes a p.d.f. Let
o(x) = /Re_l‘”p(az —a)da, x €R.
Then, ¢ is smooth and
ene Tl < oM (z) < Cpelel) Vel

Also ' ' ' ' ' '
d(z") < ¢(77) exp (|:JcZ -+ |3 - 5:’\) ) (2.4)



Proposition

The system (2.1) has at most one solution.

Idea of proof Let { X}, i € Z} be another solution.
FO=EY |X] - X{Po(X)) < T+ L+ I

where

(2.5)
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t
I=c / EY X - XiPo(X)ds,
0 i
t . . .
L=c /0 EY S IXI - XIPO(XD1 ) i1 ds,
T ]

t
L=c /0 E N IXT - XIPO(XD1 5 gujcyds.
i g



IN

IN
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I
t

¢ / B |X7 - XIPo(XI) 4L X - X0| < 1}ds
0 -

J

e [B[ X X XIPoxd | Nullmal)  ds

VE \X£|<n

t

te / By S X - RIPe(XD#{i |XI - XI| <1}
O Ui xizn

11 + Ls.

ds
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—n/2
IlQSCQ n/ )

t
Ln < 3en / E Y |XJ - XIPe(X)ds
0 7 |Xg\<n
t
ve E{ S (xd - XIPe(xd)
0 g |X£|<n

XNS([_nv n])le([—n,n})>3n }dS

¢
< cn/ f(s)ds + ce™m.
0
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Then,
t
L < cn/ f(s)ds + 2ce™".
0
Similarly
t
I, < cn/ f(s)ds + ce™.
0
Hence,

f() < cn/ot (f(s) —i—f(s)) ds + ce™".

Similarly, we can prove that

ft) < cn/ot (f(s) + f(s)) ds + ce ",



Adding two equations, we get

~ t ~
f)+ f(t) < cn/ (f(S) + f(s)) ds + ce™ ",
0
By Gronwall’s inequality, for ¢ < &, we have
F(t) + f(t) < ce™Me™ =0

This gives us uniqueness for ¢ < 4.
How to get uniqueness for any t?



Adding two equations, we get

~ t ~
f)+ f(t) < cn/ (f(S) + f(s)) ds + ce™ ",
0
By Gronwall’s inequality, for ¢ < &, we have
F(t) + f(t) < ce™Me™ =0

This gives us uniqueness for ¢ < 4.
How to get uniqueness for any t?

We get uniqueness by replacing e~ 1l by e Mal|



3. Poisson particle representation

Consider system: For i =1,2,---,
' ) t ) ¢ )
X! = X5+/ U(XZ)dWZ-(S)Jr/ b(X5, Vs)ds
0 0
+ / (XL u)W (duds) (3.1)
U x[0,t]
and
Ui = U+ [ UXaWis) + [ Ula(xi vds
0 0

—I-/ UiB(XE, u)W (duds), (3.2)
Ux[0,t]
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where V' is the measure-valued process given by

o1
V(t) = ulgroloa Z Oxi-
Ui<u

(3.3)
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Remark
i) Given V,

Zaxw

is a Poisson random measure on R x Ry with intensity measure
V(t) x m, where m is the Lebesque measure on R .

i1) Advantages of Poisson representation: V(t) can be infinite
measure.

iii)

o0
V() = lim GZe*EUtéXi
e—0+ t
i=1
w .
= lim ¢ Ule™Vig .
e—0+ ¢ o

p=ll
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Condition (B) remains true.
Wasserstein distance by

pz(V1,v2) = sup {

2f€IB31}7

where B; is the unit ball under Lipschitz norm, i.e.,

Bi={f:R=R, [f@)] <1, [f(z) = fW)] < |z —yl}

/ F) (1 — v2)(dy)
ly—z|<1



Condition (Lip): 3 K s.t. Vz, £ € R and v, v € M(R), we have

|b($,1/) - b('ivﬂ)’
< K (lz =2 1+ v(Si(x) + 2(S1(%))) + pev, ) + pz(v, 7)),

where S1(z) denotes the interval (x — 1,z + 1).

Suppose that (3.1-3.3) has two solutions (X;, U;, V') and
(X, Ui, V), i=1,2,---.
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We will need the following large ball type estimate.
Lemma

Suppose that

Votdn) \ _
ok (VO(SZ(?’” T u) =

where S3(y) is the interval with center y and radius 2. Then,
there are constants ¢, 6 > 0 such that for any s € [0,7] and
n € N, we have

P (sup Vs(S1(y)) > f) < e, (3.4)

ly|<n



Key in the proofi) V solution to (1.2).
ii) By the exponential formula of Boué-Dupuis, we have

—1ogEef<W>:infE@HuH?—f(WJr/ usds>), (3.5)
w 0

where the infimum is taken over all processes u that are
F}V-predictable such that

T
|ul|? = / uldt < oo, a.s.
0



ssssssssssssssssssssssssssssssssssss

Theorem
The infinite system (3.1-3.3) has a unique solution.
Idea of proof Let

— 1 —eU} | yvi _ wil2 i
f(t)—lg%zee 11Xy - XiTo(Xy),

and - .
g(t) =lmE} e (U] — U})*¢(X}).

f and § are defined similarly.
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Let h(t) be the sum of f(t), g(t), f(t) and §(t). Then,
h(t) < cn /t h(s)ds + ce™".
0

The uniqueness then follows from Gronwall’s inequality.



4. Application to stochastic filtering

Signal process
dXt = b(Xt)dt + O'(Xt)dBt.

Observation process
t
Y, = / h(Xs)ds + W.
0

Information
G =o{Ys: s <t}

Optimal filter
(fsme) =E(f(X0)|Ge) -
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Kallianpur-Striebel formula,

(fs pe)
<17 Mt) ’

<f7 Trt) =

where

N

(f, me) = E (f (X¢) My |Gr)
and K is expectation wrt P under which (B,Y) is B.M.
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Zakai equation: Special case of (1.1) with W =Y and

d
Log(x) = 5 3 aij(2)00,02,6(x) + b(z) Vo (a),

,j=1

Lig(x) = h(z)p(x).

Kushner-FKK equation: Special case of (1.1) with W being the
innovation process and

Li(v,u)p(x) = h(z) = (h,v).



5. Application to FBSDEs

Consider
dX(t) = b(X(t),Y(t),Z(t))dt +o(X(1),Y(t), Z(t)dW (1),
dy(t) = ( (t),Y (), Z(t))dt + Z(t)dW (1),
X(0) = Y(T) = h(X(T)).

How to solve FBSDE numerically?
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Try Y (t) = u(t, X (t)). By Ito’s formula, we get
dY(t) = Oudt +dyudX (t) + %Q,%u(dX(t))z
1
= Owudt + Oyubdt + OyucdWy + iﬁgua%lt

1
= <8tu + bOu + 2028§u> dt + OrucdWy.
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Compare with FBSDE, we get
h(t, X (1), u(t, X(t)), Z(t))
= Owu(t, X(t)) + b(t, X (t),u(t, X(t)), Z(t))0ru(t, X(t))

—%ag(t, X (t),u(t, X (t)), Z(t)2u(t, X (t)) (5.6)

and
Z(t) =o(t, X (t),u(t, X (t)), Z(t))O u(t, X (t)).
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Four step scheme (Ma-Protter-Yong):
Step 1: Find function z(t,x,y, p) satisfying

z(t,z,y,p) = o(t,z,y, 2(t, 2,9, p))p- (5.7)
Step 2: Solve PDE

Opu + b(t, x,u, z(t, ,u, Opu))Opu
—i—%az(t,a:,u, 2(t, x,u, Opu))0%u
= h(t,z,u, z(t,z,u, Ozu))
u(T,z) = g(x), z eR.
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Step 3: Solve SDE
dX (t) = b(t, X (t))dt + & (t, X (t))dW;, Xo =, (5.9)

where

b(t,z) = b(t,z,u(t,z), z(t, z,u, Oyu(t, x))).
Step 4:

Y(t) = u(t,X(t))
{Z(t) = 2(t, X(t),Y(t),0u(t, X(1))). (5.10)
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(A1) The generator g has the following form: for

Z:(Zl,"' 721)7

l

9(x,y,2) = Cla,y)y+ Y _ Dj(z,y)z,
j=1

and b(z,y), o(z), 9(z,y, 2), f(z), C(z,y) and D(z,y) are all
bounded and Lipschitz continuous maps with bounded partial
derivatives up to order 2. Furthermore, the matrix oo* is
uniformly positive definite, and the function f is integrable.
Here o* denote the transpose of the matrix o.
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We consider the following FBSDE in the fixed duration [0, T7:

dX()= (X (1), Y (1)) dt + o (X (1)) AW (2),
dY (t) = g(X (1), Y (t), Z(t))dt — Z(t)dW (t), (5.11)
X(0)= Y(T) = f(X(T)),

where b : R4 x RF — R4, 5 : R? — RIx!
g:RYx RF x R¥*! 5 RF and f: RY — RF,
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The PDE becomes

_Guliz) Lu(t 2) + C (z,u(t,x)) u (t,z)
+ 3252105 (@) Dy, u (t,2))dpu (t, o)
uwT,z) = f(a),

and
Z az] Ti,T; + Zb 69617
,j=1

with a;; = (O’UT)Z.]., o= (o1, -+ ,07) and b; being the ith
coordinate of b.
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For 0 <t¢ < T, assume v (t,z) = u (T —t,x). Then

&g’m) = Lu(t,x)+ C(z,v(t,x))v (¢ x)
+Yj-1 05 (@) Dj(w,v (t,2))0v (t,2) - (5:12)
v(0,z) = f(z).
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PDE (5.12) can be rewritten as

ov(t,x 14
(815 ) - 3 Z Oz, z; (aij(w)v(t, 7))

2,j=1

— Ed: Oz, (Bi (z,v)v(t, x))
i=1

+é(z,v(t,z))v(t,z)

where
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d
¢(z,v) = C(z,v)— Zﬁxib- (x,v)
i=1
d ) T
—> 00, D; (w,v) + 3 > O,y ii(2),
i=1 ij=1

and



Theorem (Extension of Kurtz-X. (1999))
ForO<t<T,i=1,2,---, let

Xi(t) = b(Xi(t), v(t, Xs(2)))dt + o (Xi(t))dBs(2),
A;(t) = Ai(t)e ( i(t), v (¢, X4(1))) dt (5.13)
V(t) = lim,,_yoo £ Z] 1 A;(t )5Xj(t)

with i.i.d initial random sequence {(X;(0), A;(0)),i € N} taking
values in R? x R, where {B;(t), i € N} are independent
standard Brownian motions, V(t) has density v(t,z) and
v(0,z) = f(x). Then, v(t,x) solves SPDE (5.12).



6. Application to superprocesses

At time ¢t = 0, k,, particles at locations

P €R, i=1,2,  kn.

e Each has expo.(n) clock (indep. from each other).
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6. Application to superprocesses

At time ¢t = 0, k,, particles at locations

P €R, i=1,2,  kn.

Each has expo.(n) clock (indep. from each other).
e When time-up, the particle will split/die w/ equal prob.

Denote particle by a multi-index a.

Between branching times, particle @ moves according to
dxg = b(xf)dt + c(xf)dWy + e(xf)d By

W, B¢ indep. B.M.
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;)21%4%&’&%:

Define measure-valued process
n 1
H = S
ant

where a ~ t means particle « is alive at time t.



Convergence Theorem
(1) = (p¢) unique sol. to MP: py is M(R)-valued

Mi(1) = (s £) = G Py = [ (s +af") ds

continuous martingale with

(M(f)), = /Ot (<us,f2> + <us,cf’>2> ds

where a(z) = $(e(z)? + c(z)?).

Studied by Adler and Skoulakis (2001) and Wang (1998) among
others.



(= (A > 2a K%
t
NAF) = G f) — s f) — /0 (e, bf + df") ds
t
_/ <N5acf/>dWs
0

PY_martingale w/

N = [ e 12y
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Formally,

Nt(f) = <Htaf>—<%f>
t
/ <u8,(b+ch)f’+df”> ds,
0

Therefore,

EWexp (— (us, £)) = exp (— (1, 904))
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where
t .
Yst = f+/ Caxyr,tWrdT
s

t
+/ (b0xyrt + adzyrs — yre(x)?) dr.

Stochastic integral is backward It6 integral.
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Theorem (Xiong, 2004, AP)
E" exp (= (ut, f)) = exp (= {1, yos)) »
where Lf = af” +bf’,

t
Yst = f+/ Caxyr,tdWr
s

t
—i—/ (Lyht = yryt(a:)Q) dr.
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Forward version:
t
we) = f@+ [ (Lo() - Jonla?) ar

0
—i—/o /Uh(y,x)er(m)W(drdy). (6.14)



Theorem

i) The SLLE (6.14) has a unique solution v(x).
i) vy 1s the unique solution of the following infinite particle
system: 1 =1,2,---

)

dei = dBi(t) - /U By, €)W (dtdy)

T (2a’<5z'> -/ h<y,sz'>w<y,£z'>u<dy>) dt, (6.15)

dmt mt <( ”(§t) - Ut(ft dt _/ Vh(y, ft (dtdy) )
(6.16)
(

vy = lim — Zm%déz a.s.

n—oo n

6.17)

where for any t > 0, vy is absolutely continuous with respect to
Lebesgue measure with vy as the Radon-Nikodym derivative.



Thanks!
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